" Однажды - сидя на берегу Океана Вечности..."

 

 

Научные опровержения макроэволюции.

(Биохимия и генетика)

«Живые» молекулы.

Все живые существа построены из макромолекул белков, нуклеиновых кислот, молекул углеводов, липидов, жиров и др. Оказывается, что сложность молекулярного строения клеток низших животных и человека имеет один порядок. Однотипные (хотя и разные) молекулы предназначены у разных организмов для выполнения сходных функций. Так например, белок гемоглобин предназначен для переноса кислорода в мышцы и для удаления углекислого газа и воды. Структура его сходна у самых разных животных.

В структуру этого белка у человека входит железо, а к примеру, у каракатицы – ванадий. Это обусловлено условиями жизни, необходимостью вдыхать кислород при разном парциальном давлении. Но общее правило таково: на молекулярном уровне и «простые», и «сложные» организмы сложны одинаково. Ни один живой организм не использует «примитивных» белков или «недоразвитых» нуклеиновых кислот. Следовательно, с тех пор, как существует жизнь, не существует «эволюции» в сторону усложнения биомолекул. Как могла существовать такая «химическая эволюция» до возникновения жизни, как это полагают последователи Опарина, если в условиях отсутствия жизни вся сложность органического синтеза гораздо быстрее должна была уничтожаться обратным ходом реакций. Иначе: как могла сложиться такая ситуация, что за первый миллиард лет земной истории органические молекулы не просто возникают, но проходят сложнейшую химическую эволюцию, в миллионы раз повышая свою сложность, а затем в течение трех с половиной миллиардов лет, в гораздо более благоприятных условиях, чем в безжизненном пространстве, они нисколько не увеличивают своей сложности? Проще сказать: от камня до бактерии гораздо дальше, чем от бактерии до человека, если говорить о сложности органических молекул, но сложный путь пройден в три раза быстрее, чем более простой. Не следует ли отсюда, что не было никаких подобных путей развития?

Различие сходных биомолекул.

/Молекулярная биология позволила вычислить процент различия в последовательностях аминокислот для белков, выполняющих сходные функции у разных организмов. Для примера можно взять тот же гемоглобин и сравнить аминокислотную последовательность его для разных животных. Эволюционисты предсказывали, что это различие последовательностей будет нарастать от рыбы к лягушке, от лягушки к ящерице и далее к человеку. Как и в случае с переходными формами, это пророчество не оправдалось. В книге биохимика Майкла Дентона (1985), которого цитируют многие источники, приводится, в частности, такой пример. Гемоглобин миноги (бесчелюстного угря, предполагаемого «предка» рыб) отличается по аминокислотной последовательности от карпа на 75 %, от лягушки на 81 %, от курицы на 78 %, от кенгуру на 76 % и от человека на 73 %.

Интересно подобное же сравнение по белку, именуемому цитохром-С, содержащемуся в митохондриях клеток и у животных, и у растений. Этот белок состоит примерно из ста аминокислот, и удается четко выяснить их последовательность. Для близких животных различие не очень велико, для сильно различных оно больше. Например, между лошадью и собакой это различие составляет всего 6 %, между лошадью и черепахой уже 11 %, а между лошадью и плодовой мушкой – 22 %.

Это же сравнение, приводимое между бактериями и всеми видами живых организмов – любыми позвоночными, насекомыми, даже растениями, – дает почти одинаковый результат: различие велико и составляет 65-66 %. Иначе сказать, «биохимическое расстояние» от бактерии до всех прочих видов жизни одинаково, в то время, как эволюционная модель требует нарастания этого различия от «предков» к «потомкам». Восходящей линии от простых организмов к сложным на молекулярном уровне не существует.

Подобное же заключение можно сделать, сравнив последовательность аминокислот цитохрома-С у рыбы со всеми наземными позвоночными. Результат оказывается точно таким же: различие составляет гораздо меньшую, но тоже почти одинаковую величину для рептилий, птиц и разных млекопитающих. Все они отличаются по этому признаку от рыб на 13-14 %. Подобным же образом и все млекопитающие отстоят от всех пресмыкающихся по данному признаку на одинаковом расстоянии. Подобные же результаты получаются и при сравнении любых двух групп животных.

Вывод делает сам Дентон, проводивший эти сравнения и не разделяющий идей креационизма: «Каждый класс на молекулярном уровне уникален, изолирован от других и не связан с ними какими бы то ни было переходными формами. Т.о., молекулы вслед за окаменелостями подтверждают отсутствие пресловутых переходных форм, за которыми столько лет безуспешно охотится эволюционная биология. Последние исследования показывают, что на молекулярном уровне между организмами существуют равноправные отношения. Нет организма, который в сравнении с другими можно было бы назвать „предком“ или „более развитым“, или напротив – „примитивным“.

Законы генетики и эволюция.

Когда мы начинаем разговор о генетике, очень часто нам приходится сталкиваться с понятием информации. Генетика, собственно, и есть информатика живых систем. Она изучает, как передается информация родителей к детям. Поэтому, прежде чем начинать разговор о генетике, не лишним будет вспомнить разобранные на первом уроке законы передачи информации.

Наследственная информация записана в ДНК хромосом. Вы знакомы с тем, как она прочитывается молекулами РНК, переносится на рибосомы клетки и там в точном соответствии с нею синтезируются белковые молекулы, определяющие все частные признаки организма: форму гороховых семян или цвет кроличьей шерсти. ДНК, Т.о., является громадной книгой, полной спецификацией всего оборудования той громадной живой фабрики, которой является каждый организм. Отметим известное нам из школьного учебника положение, что любая клетка организма содержит информацию в своих хромосомах о всех белках данного организма, хотя в данной конкретной клетке синтезируется и используется лишь некая часть их.

С эволюционной точки зрения логично было бы предположить, что постепенное усложнение организации животных должно неизбежно привести к росту числа хромосом от бактерий к человеку. Но такой последовательности реально не наблюдается.

Рассмотрим таблицу.

Какое из упомянутых животных примитивнее по признаку числа хромосом – очень трудно сказать. Никакой восходящей линии, на верхнем конце которой был бы человек, не наблюдается. Каждый вид сложен по-своему.

Основные выводы из законов Менделя.

В школьном учебнике приводится описание опытов Менделя по скрещиванию различных сортов гороха и его результаты. Главный общий вывод, который следует из этих опытов, состоит в том, что все признаки потомков являются следствием различных комбинаций признаков родительских. В генах родителей может присутствовать значительно больше информации, чем ее проявляется внешне (фенотипически), и то, что было у родителей «записано», но не проявлялось, может проявиться у их потомков. Однако не бывает так, чтобы самопроизвольно появился у организма наследственный признак, никак не присутствовавший ранее в генах родителей.

Эти выводы классической генетики, не учитывающие мутаций, то есть порчи самой генной информации, бывают верны в большинстве случаев по причине редкости мутаций. Они не разрешают одним видам «плавно перетекать» в другие путем беспредельного изменения наследственных признаков под действием отбора, как этого требует классический дарвинизм. Именно за это генетика и была объявлена в СССР буржуазной лженаукой, а сами ученые-генетики во главе с Н.И. Вавиловым подверглись репрессиям.

Когда инквизиторские методы научного поиска стали исчерпывать себя, атеистам удалось взять на вооружение понятие о мутациях. Об этом мы скажем чуть ниже, а пока подчеркнем, что главный способ образования разновидностей, пород, сортов – это различная перетасовка (по-научному – рекомбинация) генной информации, присутствовавшей в исходной прародительской паре. На этом стоит вся селекция культурных растений и животных.

В природе имеются виды с более или с менее богатым генофондом – то есть совокупностью признаков, которые обычно мало проявляются, но все же присутствуют и при необходимом скрещивании и отборе могут быть выведены фенотипически и стать основными для той или иной породы (сорта). Вся работа селекционера состоит в том, чтобы выбрать (селекция и означает в переводе «выбор») те особи, у которых желаемый признак наиболее проявлен, и далее, сводя их в пары, противоположные признаки свести к нулю. Т.о. из богатого генофонда дикого вида выбирается малая, но интересующая селекционера часть, которая и обусловливает качество породы – например, рост, или цвет, или что-то иное.

Если далее перестать тщательно соблюдать чистоту породы и позволить различным породам скрещиваться между собой (если они еще к этому способны), то в нескольких поколениях все породы возвратятся к исходному состоянию дикого вида. Например, если породистым собакам позволить скрещиваться как попало, они очень скоро вернуться к состоянию дворняжек, хотя ни одна из них первоначально не походила на дворняжку. Генофонд дворняжки включает в себя все генофонды породистых собак, все их признаки, но не все в выраженном виде. Обратимость селекции и естественное возвращение к исходному виду служат доказательством устойчивости исходных видов, а следовательно, отсутствия тенденции к эволюционному образованию новых таксономических единиц.

В школьном учебнике показаны основные технические способы селекции, начиная с опытов Менделя, но не подчеркивается, что всякий раз мы выбираем из исходного, как бы достаем разные карты из одной и той же колоды. Эволюция же предполагает, что в процессе такой перетасовки в колоду неизвестным способом подбрасывается новая карта (рис. 17).

Из дворняжки за сто поколений можно вывести дога или болонку, но тот и другая останутся собаками и будут воспринимать друг друга, как собака собаку. Но кошку из дворняжки получить еще никому не удалось.

Природное видообразование.

Значит ли это, что все виды были созданы совершенно неизменными, и все примеры идиоадаптации, приводимые в учебнике, выдуманы? Нет, в отличие от ароморфоза (восходящего усложнения), примеров которому никто нигде реально не наблюдал, примеры идиоадаптации (приспособительного наследственного изменения) в природе часты. В школьном учебнике приводится пример различных видов синиц, которые все похожи друг на друга, но занимают разные экологические ниши – прежде всего кормовые. Приспособление к несколько разным условиям обитания не привело к образованию принципиального нового вида клюва, к примеру, или формы тела, но позволило выбрать из исходного генофонда более удачные для данных условий признаки. Вот к чему сводится роль естественного отбора. В итоге образуются, если так можно выразиться, «дикие породы» или различные виды в пределах одного общего рода.

Точно так же образовались и различные виды галапагосских вьюрков, которых описал Дарвин, специализированные по роду корма и среде обитания. Совершенно верно, что далекие предки этих вьюрков были, вероятно, одинаковыми, но с точки зрения наследственной информации, предки содержали в себе все нынешние разновидности, не приобретя никаких добавлений в свою «генную книгу».

Точно так же различаются близкие родственники других видов: волки, койоты, динго, собаки, относящиеся к одному роду. Вполне возможно, что первозданный собачий генофонд содержал признаки всех этих видов, но потом, в связи с разной средой обитания, часть исходной генной информации закрепилась у одних, а другая часть у других представителей рода. Кроме того, наверняка значительная часть исходной информации во всех нынешних видах уже утрачена, почему довольно редко бывает возможным скрестить два близких вида и крайне редко такие гибриды бывают плодовитыми.

Ученые-креационисты выделяют первозданный род организмов, используя особое название: барамин (от еврейских слов: бара – творить, мин – род; слова, употребленные в Библии, когда говорится, что каждая тварь была создана по роду своему). Иногда этот барамин в точности соответствует виду в современной классификации, иногда роду, иногда – даже семейству, но не выше. Ясно, что в первом случае исходный генофонд не был разнообразным и все потомки почти в точности похожи на предка. Во втором и особенно в третьем случае исходный генофонд был богатым, дав возможность организмам приспособиться к разной среде и в широком диапазоне использовать первоначально заложенные возможности к изменениям.

Очень вероятно, что один из самых богатых генофондов был у первозданной лошади, почему он мог дать сразу такую богатую серию разновидностей. Биологи отмечают, что мелкая популяция, попавшая в существенно новые условия обитания, дает быстрые изменения, потому что в ней эффективно действует отбор. Это верно, но необходимо помнить, что речь по-прежнему идет лишь о выборке наиболее подходящего наследственного признака из уже имеющегося генного материала. Полагать, что Т.о. могут приобретаться принципиально новые структуры у организма – как это предлагает рассмотренная выше теория «прерывистого равновесия» – есть некорректное обобщение результата наблюдений, обобщение, противоречащее самим наблюдениям – отсутствию переходных форм между высшими таксонами.

Итак, природное видообразование не является созданием новой наследственной информации, но вызывается лишь различным перебором имеющейся в некотором избытке первоначальной генной информации исходного рода (барамина).

Разные школьники несколько по-разному делают конспект одной и той же лекции или одной и той же книги. Все конспекты немного различаются, каждый школьник выбирает то, что ему более понятно или больше нравится, но эти изменения ограничены – в конспект никак нельзя написать то, чего не было в самой книге, иначе это уже будет не конспект, а совершенно оригинальное сочинение. Подобно сему и природное видообразование ограничено заранее заданными первоначальными рамками.

Мутация – генная диверсия.

Итак, естественный или искусственный отбор может предпочесть одну генную информацию другой, выбрать одну, отвергнув другую. Этим способом никогда не удастся получить бесконечно широкого разнообразия. Более того, желание выбрать самый лучший возможный признак, который интересует селекционера, приводит к потере жизнеспособности породы, потому что отвержение исходной информации не проходит даром. Так выводятся, например, желтые или зеленые семена Менделевского гороха, так раскладывается пасьянс исходной колоды «генных» карт. Но возможно ли поменять карты самой колоды: подбросить лишнюю карту, выбросить какую-либо из карт, наконец, испортить саму карту (методом крапления)?

Оказывается, возможно, и такие операции с генной информацией называются мутациями. Мутации возникают при копировании генной информации: при удвоении ДНК, при делении половых клеток – мейозе, при оплодотворении, когда парные хромосомы отца и матери соединяются между собой. (Могут возникнуть ошибки и при «списывании» кода ДНК на белок, но в этом случае портится только молекула белка, которая тут же разлагается, и на наследственность такая ошибка не повлияет.) Итак, мы имеем дело с копированием и передачей информации, причем огромного объема, так что здесь очень кстати будет вспомнить законы передачи информации из первого урока.

При передаче информация не улучшается, а в лучшем случае остается постоянной или же, что более вероятно, портится в той или иной степени. Порча же бывает двух видов: утрата части информации (сигнала), и появление информационного «шума» – лишних бессмысленных сигналов. Таков общий закон информатики и он совершенно четко выполняется в живых системах – первоначальная генная информация утрачивается и портится любыми видами мутаций. Все факты наблюдений и экспериментов в генетике подтверждают это правило.

Обратим внимание, что генная информация великолепно защищена от всяких ошибок при копировании. Образование нуклеотида, на которое современному химику со сложнейшей аппаратурой понадобится не один день, в клетке происходит со скоростью 100 раз в секунду, при этом подсчитано, что ошибки такого быстрого копирования исходной ДНК происходят со средней частотой один раз на сто миллиардов (10^11) нуклеотидов. Но в этих случаях в действие вступают особые ферменты – энзимы, которые исправляют испорченные нуклеотиды. Если бы такого контроля не было, ни один вид не смог бы сохраниться даже в нескольких поколениях.

И все же ошибки при копировании в генах иногда возникают, особенно при использовании мутагенных препаратов или при облучении. В дело вступает вторая ступень контрольной защиты от мутаций – такой ген не способен функционировать, с него не «списывается» действующий белок. Если испорченный ген унаследован от одного из родителей, то обычно, необходимый белок «списывается» с парного (аллельного) гена другого родителя и мутация никак не проявляется, т.е. оказывается рецессивной. Большинство мутаций не просто редки, но и рецессивны, то есть безопасны хотя бы до поры до времени. Однако если по каким-то причинам ген испорчен одними и теми же канцерогенами или лучами у обоих родителей, это может привести или к бесплодию, или к уродству потомства. Такой урод (даже если бы он казался эволюционистам обнадеживающим) безнадежно срезается в естественных условиях отбором. Это третья стадия контроля за точностью воспроизведения наследственной информации.

Т.о., мутации, во-1-х, редки, благодаря контролю в самом клеточном ядре; во-2-х, почти всегда рецессивны, благодаря использованию неиспорченного гена второго родителя; в-3-х, прошедшие эти две степени контроля мутации оказываются смертоносными или настолько вредными, что их «вычищает» естественный отбор. Могут ли эти случайные ошибки в отлично отлаженном и защищенном от ошибок механизме привести к созданию новых, более высокоразвитых существ? Смешной и праздный вопрос!

И все же нелишне было бы оценить вероятность появления наперед заданной полезной мутации. Возьмем тот же цитохром-С. При переходе от рыбы к амфибии он должен измениться на 13%. Какова вероятность такого изменения гена, отвечающего за синтез этого белка, чтобы синтезировался нужный для амфибии белок, если принять длину молекулы белка за 100 аминокислот?

Для того, чтобы найти решение такой задачи, необходимо последовательно угадать места аминокислот (на ДНК – триплетов), подлежащих замене, затем независимо от этого поиска следует отгадать триплет, который заменит первый из подлежащих замене, затем второй, и так далее все 13 подлежащих замене триплетов. Общая вероятность будет равна произведению вероятностей всех этих случайных независимых событий. Для упрощения можно принять, что каждая аминокислота кодируется ровно тремя различными триплетами, а поскольку в состав каждого триплета входят три из четырех различных нуклеотидов, то вероятность ее отгадывания составит (1/4)^3+(1/4)^3+(1/4)^3 = 3/64 ≈ 1/20.

Вероятность отгадать первое место подлежащего замене триплета равна 1/100, вероятность угадать после этого второе место – 1/99, потому что выбор идет уже из 99 неизвестных мест. Вероятность угадать все 13 мест составит (рис. 18, а):

В итоге общая вероятность составляет:

Опять получаем те же сверхастрономические цифры, что и при расчетах вероятности возникновения жизни. И это при условии, что мы пренебрегаем системой контроля за правильностью копирования, рассматриваем только один и притом простейший белок, кодируемый только одним геном из громадного количества генов, подлежащих точно такой же направленной замене. Проще сказать: вероятность обнадеживающего урода равна по порядку величины вероятности самопроизвольного возникновения жизни, что равняется нулю!! Случайная мутация никоим образом и ни при каких обстоятельствах не может служить причиной усложнения организма (ароморфоза)!

Полезная дегенерация.

Значит ли это, что полезных мутаций вообще не бывает? – Конечно, впрочем за очень редкими исключениями. Возможны такие мутации, которые невозможно предположить, исходя из теории вероятностей, потому что они объясняются не ошибками в копировании нуклеотидов, а более грубыми вмешательствами в генотип. Например, если по каким-то причинам часть хромосомы при мейозе просто утратилась, – нам очень трудно рассчитать вероятность такого неслучайного события. Однако такая «кража карт» из генной колоды должна привести к существенным дегенеративным изменениям в организме. Есть редкие примеры, когда такая дегенерация оказывалась для животных полезной и отбор позволил обнадеживающим уродам выжить, дать потомство и захватить первенство в виде.

В книгах приводятся два таких примера: это потеря крыльев жуками, живущими на скалистых островах, и потеря глаз пещерными рыбами, живущими в полной темноте. Обе мутации оказались для выживаемости полезными: крылатых жуков чаще сдувало ветром в море, а бесполезные глаза чаще повреждались и вызывали заболевания, не принося ровно никакой пользы. Других примеров встречать в литературе не приходилось. Но даже если подобные примеры еще есть, они никоим образом не говорят о пользе мутаций для эволюции. Эволюция не может идти методом дегенерации – и только. Мутация может убрать глаз или крыло, но она не в силах создать глаз, крыло или ногу.

Об этом красноречиво свидетельствует история опытов с плодовой мушкой дрозофилой. Уже несколько десятилетий ученые самыми разными способами вызывают у нее всякие мутации. Им не раз доводилось «вывести» бескрылую, или безногую, или безглазую муху, но никогда еще не удавалось вывести муху с какими-то более совершенными приспособлениями. И это при том, что муха меняет 20 поколений в год, а скорость эволюции все биологи исчисляют не числом лет, а числом поколений.

Общая дегенерация жизни.

Изучение биологии приводит нас к выводу, похожему на тот, что мы видели, говоря об астрономии. Как там мы видели, что энергия имеет свойство качественно ухудшаться, химический состав вещества во Вселенной стремится также к качественному ухудшению и обеднению в сторону устойчивых средних элементов, – подобно тому и в биосфере земли происходят на наших глазах изменения только в сторону дегенерации. Это проявляется как в исчезновении многих видов, то есть в качественном обеднении биосферы, так и в утрате этими видами многих ценных свойств, которые были у них ранее – виды вырождаются.

Ископаемых видов множество, а новых видов человек не только не создал, но и никогда не видел их создания (мы подразумеваем виды, качественно более сложные, чем есть в природе). Ароморфоз учеными только воображается, дегенерацию же можно воочию наблюдать. О рудиментах еще говорят и, возможно, их находят, а о нарождающихся органах нет и помину. То и другое наглядно свидетельствует о качественной порче.

Из этого следует, что когда-то информация о всем живом на земле, если так можно выразиться, генофонд планеты имел начало. Затем он начал передаваться из поколения в поколение в точности по законам информодинамики: новая информация не возникала сама собой, а старая при передаче только портилась. Вымирание большинства исчезнувших видов невозможно объяснить только экологическим вмешательством человека, ибо они вымерли до начала сознательного их истребления людьми.

Итак, общее растление мира проявляется на самых разных ступенях его бытия: в химическом составе, в энергетике, в биологическом отношении. Живя по нынешним законам, природа (да и человек сам по себе) не способна к прогрессу, но зато тяготеет к регрессу и растлению. И все же, она до сих пор еще удивительно сложна, разнообразна и прекрасна. Объяснить это можно только целенаправленным сотворением всего сущего Богом – Существом Всемогущим Всеведущим и Всесвятым – то есть бесконечно праведным и прекрасным.

 Отрицать Творца и утверждать в нынешнем мире действие законов прогресса – полное безумие, похожее на самодурство одного сказочного правителя, не желавшего подниматься вверх по лестницам и требовавшего от своих зодчих построить такой дворец, на вершину которого можно было бы подняться, лишь нисходя по всем лестницам! Так и эволюция предлагает подъем от бактерии к человеку, имея в руках только дегенеративные процессы.

Возможна ли целенаправленная эволюция?

Но не мог ли Творец, разумно направляя всякие мутации, рождая обнадеживающих уродов, создать из первой клетки всю прочую жизнь? Может быть Он так и сделал когда-то, а сейчас перестал так делать и мир самопроизвольно потихоньку деградирует?

На эти вопросы наука точно ответить уже не может. Она может говорить только о той области, где действуют нынешние объективные законы природы. Рассматривая их, честный ученый должен прийти к выводу, что возникновение мира, жизни, разума и динамику их развития по нынешним законам объяснить невозможно и необходимо допустить воздействие иной, сверхестественной причины бытия всего сущего. На этом функции науки должны кончиться. Познавать сущность бытия далее научными методами – наблюдением, экспериментом и логикой – уже невозможно. Основы дальнейшего познания мира даются человеку в Откровении – слове Божием, и могут приниматься и отвергаться верою, а не рассудком.

Христианское Откровение – Библия – прямо отрицает возможность эволюционного превращения видов, выходящего за рамки признаков первого сотворенного рода. Точно так понимают это место Библии святые Отцы – древние учители Православной Церкви – и современные ученые-креационисты.

Поскольку нынешнее наше изложение намеренно не входит в область сугубо религиозную, мы только ограничимся констатацией факта: сам библейский текст и его классическое христианское понимание не допускают эволюции, хотя бы и направленной Богом. Впрочем, мы не обязываем читателя верить этому, как научному факту. Честная наука исключает лишь случайную эволюцию, а о направленной не может сказать ничего однозначно.

Впрочем, даже против направленной эволюции есть косвенные научные свидетельства (и прямые библейские и святоотеческие опровержения, которых мы здесь касаться не будем). Одно из таких косвенных свидетельств затрагивается в самом школьном учебнике. В разделе «Генетика» указывается на одну нерешенную проблему, которая формулируется так:

«В каждой клетке имеется весь набор генов данного вида. Очевидно, что в разных клетках и тканях функционируют лишь немногие гены, а именно те, которые определяют свойства данной клетки, ткани, органа. Каков же механизм, обеспечивающий активность определенных генов (в данной конкретной клетке – с. Т.)? Эта проблема сейчас усиленно разрабатывается в науке» [3, с. 238].

Подобная проблема не одна. Несмотря на всю свою сложность, ДНК несет информацию о самых нижних по уровню элементах организма. ДНК – это только инструкция по изготовлению белков организма. Всех белков, во-первых, и всех белков, возможных в различных расах, породах и сортах, во-вторых. Проще сказать – это расширенная спецификация всех кирпичей здания во всех возможных вариантах и инструкция по изготовлению этих кирпичей – и не более того. Но достаточно ли этого для построения здания?

Всякий организм начинается с одной клетки – зиготы. Откуда эта клетка знает, в какой последовательности при своем делении образовать мышечные, нервные, покровные и всякие прочие ткани? Как потом осуществляется сложнейшее взаимодействие между тканями и органами? Клетка с помощью ферментов может строить и отчасти регулировать саму себя, но каким образом строится и регулируется весь организм? Каким образом клетки каждого органа делятся в таком темпе, что организм растет пропорционально, а потом останавливается в своем росте? Если это регулирование пропорционального роста нарушается и клетки некой ткани «возмущаются» и размножаются как попало, не сообразуясь с другими тканями, – возникает злокачественная опухоль, насквозь пронзающая другие ткани и органы. Такова суть раковых заболеваний, причины которых также совершенно неясны ученым.

Материальный носитель всей этой инструкции по управлению не обнаружен – вот о чем говорит приведенная цитата из учебника. Механизм этот в огромной своей части является наследственной информацией, которая записана неизвестно где, но не в ДНК. Что такое ДНК – удалось прочесть, но информации по управлению всем организмом там не обнаружено. Других материальных носителей информации в клетке, которые могли бы нести в себе подобного рода инструкцию, – тем более нет. Значит ли это, что необходимая информация не имеет материального носителя, хотя и соприсутствует организму во все время его жизни, и если где-то эта информация портится, то организм может погибнуть? – По всей видимости, да, существует невидимая сущность живого организма (можно именовать ее душою животного или жизненной силой – нет большой разницы), идеальная по своей природе, но тесно связанная с материальным составом организма. Жизнь, иными словами, не сводится к физико-химическому уровню, к законам химического взаимодействия молекул. Так искони считали все биологи до Дарвина, и всем им в той же мере, что и нам непонятен состав и свойства этой невидимой сущности, этой информации, не имеющей материального носителя. Наука в этом вопросе вновь подошла к границам своей применимости.

Теперь мы можем вновь вернуться к вопросу о направленной эволюции. Если действительно, каждый барамин, помимо генной своей инструкции несет не меньшую, а гораздо большую информацию по управлению, не имеющую материального носителя, то он становится настолько уникален, что его гораздо легче сделать заново, чем произвести из другой – столь же огромной, столь же уникальной, но все же иной – информации об ином барамине. Для блеклого сравнения можно поставить вопрос: чтобы великий писатель переделал один свой роман в другой методом перестановки букв и слов первого романа и добавлением лишь недостающих букв в нужном количестве, – для этой цели, нет спора, нужен гений писателя и случайно такая перестановка не произойдет никогда. Но согласится ли сам писатель на такую ужасно глупую и нудную работу, которая только надорвет его творческие силы, отвлекая от действительно творческого замысла на самую отвратительную рутину?

У нас нет научного доказательства, что Бог не творил мир таким способом – методом эволюционной рутины. Но в то же время ясно видно, что эволюционный многократный переход от одного вида к другому – это самый неэффективный, самый косный и, кроме того, самый жестокий способ творения (ведь в инструменты здесь берется отбор – смерть, стирающая промежуточные формы жизни). Единственное оправдание этому способу могло быть в том, что он позволял бы все биологические процессы свести только к органической химии. Но как раз этого-то преимущества, как мы видели, он и не дает! Первую живую клетку все равно можно создать только чудом. Многоклеточный высокоразвитый организм кроме этого чуда все равно несет в себе чудо более высокого порядка – жизненную силу, живую душу, материально незакодированную информацию. Обойтись без чудес при творении все равно не удается. Зачем же Всесильному Чудотворцу – Богу опускаться до самых примитивных и жестоких способов творения, когда все равно к ним невозможно свести всей творческой работы?

На этом мы ненадолго прервем рассуждение о творении и рассмотрим предварительно вопрос о происхождении человека, как существа не только биологического, и даже не только социального, но и нравственного.

Философски рассуждая, в бытии мира есть такие качества, в которые, вопреки материалистической диалектике, никогда не может перейти количество более низшего качества. Жизнь невозможно свести к физике и химии и даже к классической информатике на материальных носителях. Как ни усложняй органическую химию – жизни не получишь. Многоклеточную жизнь невозможно представить себе как количественно усложненную одноклеточную. Законы развития биоценоза (да и отдельной популяции) не исчерпываются суммой всех биологических жизней, составляющих сообщество. Наконец, разум, а тем более нравственно-духовные категории, не являются только высшей формой биологического достижения. Потому-то между неживым, живым и разумным невозможно протянуть ниточку эволюционного восхождения.

Происхождение человека >>